
 Programming with 12Blocks
© OneRobot.org
December 2014

Introduction

12Blocks is an intuitive, powerful environment for programming popular microprocessors and
robots. It’s a visual language that makes programming as simple as drag-n-drop. Hundreds of
blocks support everything from reading sensors to generating sounds – it's also easy to import
code libraries to create new blocks. 12Blocks provides rich graphical debugging tools and guided
tutorials to make both novice and expert programmers successful. 12Blocks is ideal for
classrooms, students, hobbyists and professionals who want to quickly and easily build electronic
projects.

With 12Blocks you can easily:
• create programs by snapping blocks together
• run programs on many different devices by pressing “Run”
• graph program and sensor values
• change program parameters while your program runs
• interface with sensors, peripherals, actuators and devices
• integrate your project with PC applications like Excel and MathLab
• manage complex programs with tabbed worksheets, file inclusion,

undo/redo, copy/paste and lasso selection

12Blocks is easy and fun enough to be used by a 5 year old, but extensible and powerful enough
to be used professionally. In this guide you’ll download and install 12Blocks in its 30 day
evaluation mode and work through sample programs that increase in complexity from a simple
“Hello World” program to using arrays, functions, and event messages.

We’ll cover how to:
• Snap blocks together to create programs
• Customize blocks by changing their parameters.
• Use 12Blocks with popular robots, microprocessors, and simulators.
• Combine existing blocks into functions with arguments, local variables and return values
• Create brand new blocks by importing text-based libraries
• Write programs that output graphics, play music, control servos, read sensors.
• Document your program with comments, schematics and images
• Create user interfaces featuring customizable text-boxes, buttons and sliders.
• Use multiple start blocks to write multiprocessing/multi-threading programs
• Program with event handlers, state machines, tasks and interrupts
• Support custom hardware with the Device Manager and XML files
• View generated source code, make changes, and continue editing blocks
• Use 12Blocks in the classroom with the Online Learning System

Videos:
If you prefer watching videos to reading this document, check out our video tutorials at:
http://12blocks.com/videos

Installation

Download 12Blocks from here:
 http://12blocks.com/download

There are standard installers for Windows, Mac
OSX and Linux. Follow the prompts and
instructions.

To support this project we ask you to purchase a
license and register 12Blocks if you plan to use
it after evaluating it.

Robots, Microprocessors and Simulators

12Blocks supports all sorts of popular robots and microprocessors.
12Blocks also includes simulators for all sorts of robots to let you get
started without the complexities of hardware. A good approach is to
master a new skill using a simulator before applying it to robots and
electronics in the real world.

Additional Help

We are passionate about making you successful with your 12Blocks projects. Here are some of
the ways you can get help when you need it:

• 12Blocks Help Reference: click “Help>Reference” in 12Blocks to get help on the
program and individual blocks.

• Videos: http://12blocks.com/videos provides a list of videos to get you going
• Forums: http://onerobot.org/forums/ to get help from the online community
• Online Learning System: http://onerobot.org/ols/ to use 12Blocks in the classroom or to

learn through online activities

• Contact us directly here: http://onerobot.org/about/

http://12blocks.com/videos
http://onerobot.org/about/
http://onerobot.org/ols/
http://onerobot.org/forums/
http://12blocks.com/videos
http://12blocks.com/download

Table of Contents
Exercise 1:Understanding the 12Blocks Interface...4
Exercise 2:Send “Hello World” to Simulated Terminal...6
Exercise 3:Send text from Device to Terminal..8
Exercise 4:Send text and numbers to the terminal...9
Exercise 5:Math..11
Exercise 6:Repeat...12
Exercise 7:Variables...13
Exercise 8:Tasks...14
Exercise 9:State Machines..15
Exercise 10:Working with Strings..16
Exercise 11:Random Numbers...17
Exercise 12:Pointers...18
Exercise 13:Use multiple processors to blink lights...19
Exercise 14:Sounds..22
Exercise 15:Graphics..23
Exercise 16:Controlling servos with Mouse and Keyboard...27
Exercise 17:Calculating Fibonacci Numbers with Functions..30
Exercise 18:Serial Communication..34
Exercise 19:Measuring Pulse Width Modulated signals..36
Exercise 21:Creating Custom Blocks...37
Exercise 23:Creating a User Interface and Standalone Executable......................................38
Exercise 24:Editing Programs with 12Blocks and a Text Editor...39
Exercise 25:Adapting 12Blocks to Custom Hardware...40
Exercise 26:Interfacing with Skype..42
Exercise 29:Control Algorithms with PID loops..43
Exercise 31: Integration with XML-RPC...44
Exercise 32:Online Learning System...46

Exercise 1:Understanding the 12Blocks Interface

When you start 12Blocks you are greeted by a start screen that let's you choose a device and
activity. If your device is listed on the screen click one of the listed activities or “New” to start a
new one. If you don't see your device, select the device and type in the bottom left corner and
press “Add to Above”.

To write programs in 12Blocks you'll drag blocks from the Block Library to the Worksheet.
Use the Menu or the Toolbar to perform actions like “running” your program or saving it.
The Device Selector on top of the Block Library tells you what device you're programming, and
can be clicked to change to a different device. Finally, you can use the Port and Mode Selector
on the top right to tell 12Blocks how to communicate with your device. For now, just take a
look around, we'll explore the details in the next exercises.

Exercise 2:Send “ Hello World” to Simulated Terminal

In this exercise you will start 12Blocks, set to mode to Simulator and build a program to send
“Hello World” to the terminal.

Start 12Blocks and use the Start Screen to select a “New” activity for your device.
You should see an empty worksheet. Click on the Mode Selector in the top right corner to
change the mode.

Change the mode to simulator. The simulator let's you quickly and easily run programs within
12Blocks. Remember to change this mode back to Device to run code on your device.

Your programs must start with one of the start blocks- they’re drawn with a triangular top. So,
start your program by dragging the start block to the worksheet from the control section of the
block library. (Move your mouse to the start block in the library, hold down the left mouse
button, move the mouse back to the worksheet and release the mouse button).
Your program in the worksheet should look like this:

Now, you need to add a block which will send text to the terminal. The send text block is in the
interface section of the library. Drag the send text block so it joins to the start block in the
worksheet. (Drag it to the bottom of the start block and let go of the mouse button when you see
the blue hint). Your program should look like this:

To view your text, you need to drag a terminal block to your worksheet. Click Run on the
toolbar to run your program!

Exercise 3:Send text from Device to Terminal

In this exercise you'll run the program built in the previous exercise on your device.

Take the program from the previous exercise and use the Mode Selector in top right to change
the mode back to Device. The Port Selector in the top right should be set to “Auto”- or the port
name of your device if you know it. The Device Selector in the top left should indicate the
device you have connected to your computer. Your screen should look like this:

Once everything looks good, click the “Run” button and you should see that your device is
programmed and that the terminal shows your greeting.

Here are some tips in case you had problems:
• Confirm that your device is connected and powered on
• Confirm that the Mode Selector is set to Device
• Confirm that the Device Selector shows the name of your device
• Change the Port Selector to the port your device is using

Exercise 4:Send text and numbers to the terminal

In this exercise you'll use interface blocks to send text and numbers to the terminal.

Start by rearranging that the program you wrote in the first exercise and then confirm that it still
works. You can drag stacks of blocks around the worksheet by dragging the topmost block.
You can change the size of square blocks by dragging their bottom right corner.

Now, make some changes to your program. Start by changing what text will be sent. Click on
the yellow area- this is the parameter section of the block. Type goodbye into this box and
press enter. After you click Run, your program and terminal should look like this:

To send hello world before goodbye drag another send text block between the start and
the existing send text block. (Drag the send text block from the terminal section of the library to
the bottom of the start block, release the mouse button when you see a blue hint.)
Drag the send newline block between the two send text blocks and run your program:

Finally, send a number to the terminal at a specified location using the send “x=” and set
position blocks:

You can also use special characters in the print text block- for example, “\n” inserts a new line.
When you’re finished with your program, press the Save button. Name your file Hello
World and hit the save button. To open your file in the future, press the Open button, select the
Hello World file, and press the Open button.

Additional things to try:
• If you make a mistake, click the Undo button to go back one action at a time. Click the Redo

button to go forwards.
• Click the New command button to add a “New” worksheet.
• Close a worksheet with the “x” next to it’s name.
• Click Help->Reference to read the help manual.
• If you don’t want to use a block anymore, drag it back to the library.

Directories:
By default, 12Blocks installs program related files (12Blocks.exe, plugins, library definitions,
etc) in “Program Files/12Blocks”. User files like Examples and Tutorials are stored in the “My
Documents/12Blocks” folder.

Exercise 5:Math

You can use the terminal to show the result of simple math problems:

You can also perform more complex calculations:

Notice that in 12Blocks you can type formulas into yellow regions that accept numbers. These
formulas can use the following operators:

Operator Meaning Example

+ Addition 1+1=2

* Multiplication 2*3=6

/ Division 10/5=2

(...) Group together 20/(10*2)=1

% Modulo (remainder) 5 % 2=1

Some devices support additional advanced operators- you can use those as well

Exercise 6:Repeat

Frequently you'll want to repeat an action. In 12Blocks this is done with one of the repeat blocks
found in the control part of the library. The following program sends the word “hi” to the
terminal 10 times before sending “bye”. Notice how the block that sends “hi” is inside the
repeat block.

Use the repeat n from... block to repeat an action while counting from a start to an ending
number with a variable. Here the variable's value is sent to the terminal. You'll learn more about
variables in the next section.

Exercise 7:Variables

Variables are named locations for storing data. For example, in the following program the value
42 is stored in the variable named x and later sent to the terminal:

Variables are useful for all sorts of reasons:
• We can give descriptive names to numbers to make programs easier to understand
• The same variable can be used many times, making it our programs easier to change
• Variable make our programs flexible because they can take on different values

In the following program we'll use the variable named sum inside a repeat loop to calculate the
sum of the first 10 numbers:

You can also use variables in formulas:

Exercise 8:Tasks

You’ve seen how to use the start block to begin executing a stack of blocks. You can also start a
stack of blocks with a when block to start when a trigger condition happened. For example, this
program will print “hello world” when the mouse button is down.

Now, let's look at 12Blocks works with tasks (File>Examples>control>tasks):

This program has one start block that uses the start task block to begin processing another task
asynchronously- in parallel. The microcontroller will be doing 2 things at the same time. The
original execution will continue with the repeat block that continually calls the start task and
wait block- this will print “-” to the terminal. The task labeled “async” will run in parallel and
repeatedly print “+” to the terminal. So- the terminal will show a message of: “+-+-+-”

Exercise 9:State Machines

A state machine is a model of behavior with states and transitions between states. For example,
a door has two states- open and closed. It also has two transitions- opening and closing. State
machines can make it easier to program sophisticated behavior by letting you focus on what
happens in one state at a time.

12Blocks includes 3 blocks to make state machines easy to use:
• “when in state” Use this block as a start block to carry out actions that should be performed

when the state machine is in a specified state.
• “set state to”: Use this block to transition to a new state specified by the parameter.
• “run state machine”: Use this block to run one cycle of the state machine. The variable

which you pass to this block is used to keep track of the state machine’s state. By using
multiple “run” blocks, each with their own variable, you can program multiple state
machines.

The following program (File>Examples>control>StateMachine) illustrates a simple state
machine.

Exercise 10:Working with Strings

Besides being good at numbers, computers can also manipulate text- or strings. In 12Blocks you
need to quote strings- like this: “hello world”. You can store strings in an array- make sure it's
long enough. Strings are passed around by their address- this makes it easy to chain functions.

(File>Examples>control/strings)

Output
Original: Hi
Join: Hi bob
Lower: hi bob
Capital: Hi Bob
Upper: HI BOB
Copy: HI BOB HI BOB
Trimmed:HI BOB HI BOB
Padded:HI BOB HI BOB*******
Reversed:*******BOB IH BOB IH
Replaced:*******BOB IH BOB IH
In 5 years Bob will be:12

Exercise 11:Random Numbers

Random numbers are a good way to make a program more interesting- they add an element of
chance and surprise. A 6 sided dice is an example of a random number generator- roll it and it'll
give you a number between 1 and 6 at random. With 12Blocks you can decide how many sides
the dice has- you'll then get back a number from 1 to the number you specify.

(File>Examples/control/random)

Output:
14
3
7
19
3

Exercise 12:Pointers

In the String exercise we've already alluded to passing around the address of a string. The '@'
character gives us the address of a variable- its location in memory. Once we have an address,
we can use the set array block to change it.
(File/Examples/control/pointers)

Output:
z's address in ram:2928
z's first value:1
z's new value:13

Exercise 13:Use multiple processors to blink lights

Sample Programs:
Instead of assembling this program, you can load it:File>Examples>Graphics>Lights

In this program you’ll use three of the Propeller’s 8 cogs (Parallax’s name for processor) to blink
lights with different techniques. The simplest way is to use the output frequency block.

This program includes some new blocks:
• The block with italics is a comment block that we can use to document our programs. Just

click on its text to edit it.
• The repeat block has two attach points, one at the bottom and one indented in it’s inner part.

This block is one of several loop blocks that will run the inner blocks a set number of times
before continuing. The simple repeat block will loop forever.

• The output frequency block is from the “pins” section of the library. Blocks in that section
directly manipulate one or more of the 32 pins of the Propeller. You can attach things like
lights, switches, sensors and motors to those pins. In our case, we’re outputting a frequency
of 5 Hz to pin #16, which on the Demo Board is connected to an LED- a thing that lights up
when it’s turned on.

So, this program will continually blink an LED at 5 Hz.
Press the Run command button to see for yourself!

Blinking one light is easy, now blink another one. Drag another start block to the worksheet and
assemble your program so it looks like this:

The right stack uses the familiar start, comment, and repeat blocks. However, it blinks the LED
by using the toggle block to change the pin's state from High to Low and back again. Each time
through the loop it uses the wait block to wait for 1000milliseconds- or 1 second.

By using two start blocks, we’re using two “cogs” and running our program in parallel. This is a
very powerful technique that makes the Propeller ideal for creating powerful programs- and
12Blocks makes it very easy to use.
Press the Run button to see the two LED’s blink.

Now that your program is running, change the frequency from 5 to 11 by clicking on the yellow
parameter field, typing 11 and pressing enter. You won’t need to stop and recompile, 12Blocks
let’s you make changes to parameters with numbers while your program is running! You should
see the LED blink more quickly. Now, change the frequency to 1000, a speed that’s too fast for
your eyes to see. The LED will appear to be on all the time, so we need a tool to make sure the
LED is actually blinking. Press the “View Pins” button and you should see this view:

Representation of the Propeller
chip.
Red pins are “on”, blue pins are
“off”.

Use the Timescale Dial to
determine the length of time
you wish to look at. The
current setting of 1ms/div is
good for looking at our signal of
1000hz.

This “Logic” graph displays
pins we use in our program:
“tx,rx,16 and 17”. Notice how
p16 toggles once every 1msec-
or 1000 times/second.

Finally add a start block and blink a third LED with pulse width modulation. Assemble your
program so it looks like this:

Notice that we’re using a different loop- one that let’s us specify a variable and counts from a
start to a stop value with a given step. In our case, the loop will count n from 1 to 255 in steps
of 1 and then repeat.

Also notice the output pwm block. This very quickly toggles it’s pin- but stays on for different
amounts of time. When n is 1, it will only turn on for a very short time, which makes the LED
appear to be off. When n is 255, it will turn on for a very long time, making it appear on. At
128, the LED will be on as long as it’s off- so it will appear “dim”.

The wait block determines the frequency of the blinking. As configured, it will do one cycle in
255 steps*10ms/step=2.55seconds.

Run this program and you should see pin 18 repeatedly getting brighter.
While the program is running, change the start value from a 1 to 100. This will brighten the
LED from dim to on. Finally change the stop value from 255 to 0. This will gradually darken
the LED from dim to off.

Exercise 14:Sounds

Connecting speakers/microphone to a Propeller:
The Demo Board includes a built-in microphone and a socket for headphone speakers. Refer to
your Propeller documentation to build the simple circuits if you’re using different hardware.
It’s easy and fun to create sounds with the Propeller and 12Blocks. This program
(File>Examples>Sounds>Sounds) demonstrates some blocks from the sound section of the
library:

Here’s what this program does:
• It starts with one start block and a comment
• It uses a repeat block to continually run blocks from the audio section of the library
• The tone volume is set to 8 and two tones are played for 500 msecs each. A tone of 440hertz

is called Concert A, on the piano it’s the first A to the right of Middle C. Playing a tone at
twice that frequency makes it an octave higher.

• The tone volume is then set to 7 and another lower note is played.
• A WAV file is played.
• The speak block uses text to speech technology to speak any text. Try experimenting with

different spellings of words to get the right pronunciation.
• The speak file block uses vocal tract parameters to specify exactly how to speak a word.
• The spell block speaks each character of the text.

Additional things to try:
• Click File->Save As to save the file with a new name
• Click File->Print to print your code.
• Click Help->Report Bug to report a bug.
• Use other Sound blocks to record and play back sound

Exercise 15:Graphics

Connecting your Monitor/TV to a Propeller:
The Demo Board includes a VGA connector for use with most computer monitors as well as a
composite socket to connect to most TV’s. Refer to your Propeller documentation to build the
simple resistor circuit if you’re using different hardware.
12Blocks supports graphics and text output to both VGA and TV monitors.
Click Settings->Graphic Output to select which device you want to use.
You’ve seen how easy it is to assemble some audio blocks to play music with the Propeller, now
give graphics a try! Assemble this program from the blocks in the library’s graphics section (or
click Files>Examples>graphics>graphics)

Run your program and you should see text, a vector star, a crosshair sprite, a triangle on your
screen. The items will move and change in size. Here’s what the program does:
• The program begins with a start block
• The comment blocks tells us a bit about the program
• The red set block sets the global variable m to a value of 1. Global variables are defined just

by using them. Later we’ll see how to change this variable from other programs like Excel.
• The outer repeat block continually runs the inner stack.
• The inner repeat causes variable n to count from 1 to 255 with step m. Variables have names

that start with letters and can store integer values, like -1, 10, or 2,000,000. To use a variable,
just type its name into the parameter field of a block, or use it in an expression.

• Finally we get to the real meat of our program, with blocks from the graphics section of the
library. At the start of each cycle, it clears the screen

• Then hello world is printed at position (5,5)

• A vector named star is drawn to (33,33) and scaled by n. See below to learn what a vector
drawing is and how to edit one. The scale factor means that the drawing will get larger as n
increases.

• A sprite named crosshair is drawn to (n/10-20,-15). The expression n/10-20 first divides n
by 10 and then subtracts 20, so, as n gets larger, the sprite will slowly move further to the
right. See below to learn what a sprite is and how to edit one.

• A filled triangle is drawn at specified vertices.
• Finally, the program updates the screen with the new graphics- without block, you wouldn’t

see your graphics, so don’t forget about this block!

Drawing with Sprites
Sprites are like stickers, they can contain intricate drawing in multiple colors and are easily
placed where you want them. You edit a sprite by clicking on the parameter of the draw sprite
block- this brings up the sprite editing tool:

Drawing with Vectors
Vectors are like “connect the dot drawings”, lines are drawn between points which you can edit
with the vector editing tool. Click on the parameter of the draw vector block to start the tool:

Change the
sprite’s size here.

Click to look
for existing
sprite files.

Click to paint a pixel
with the selected
color.

If you’ve made changes to parameters like a text string, an expressions, a sprite or a vector,
you’ll need to click Run to load the modified program to the Propeller to see your changes. If
just changed a parameter from one number to another you’ll see the change right away- like
moving an object or rotating it.

This program has two variables named n and m. The variable m defines the step size with which
n increases- it’s set to 1 initially, which means n counts like this: 1,2,3,...
If we set m to 2, n will count by 2’s- and so the animation will go twice as fast. You’ve seen
how to make changes to the program running on the Propeller from within 12Blocks, now you’ll
make changes to a program running on the Propeller using Microsoft Excel. The last comment
links to a excel client- click it to open the excel spreadsheet on your computer. The spreadsheet
uses macros so you’ll need to enable them when prompted. It looks like this:

Click here to add points to
draw to. The red dot
indicates the last point
entered.

Click here look for existing
vector files.

Once you click on the “Start Connection” button in the spreadsheet, you’ll see cell B24 change-
it continuously shows the current value of the variable n from your program. Cell b22 is linked
to variable m, when you change this to 2, the graphic animation will go twice as fast. Read the
rest of the spreadsheet to learn how to control and monitor global variables in your Propeller
programs with 12Blocks.
Integrating with other languages/applications:
To learn how to integrate with other applications and languages like C#, VB.NET, Python,
Delphi and Matlab, visit our integration website: http://12blocks/integrate.php

Click here to start a
connection with the program
running on the Propeller

http://12blocks/integrate.php

Exercise 16:Controlling servos with Mouse and Keyboard

Connecting servos, mouse and keyboard to a Propeller:
The Demo Board includes sockets for a PS/2 Mouse and Keyboard. Refer to your Propeller
documentation to build the simple circuits if you’re using different hardware. To connect a
hobby servo to your Propeller, first plug the servo into a breadboard. Then, use wires to connect
the servo’s black wire to ground, labeled VSS. Connect the servo’s red wire to 5V. And connect
the servo’s white wire to one of the Propeller’s pins with a 100ohm resistor.
Time to build a simple robot- or at least figure out how to control hobby servos with a mouse and
a keyboard. Here’s the program (File/Examples/robot/robot)

To use it, confirm you’ve connected a mouse and keyboard to your Propeller and servos on pins
0, 1 and 2. When you run the program two motors should follow the (x,y) position of your
mouse, while the mouse’s scroll wheel controls the third. Pressing the mouse button should
temporarily idle servo 0.

Let’s see what the program does:
• It uses 2 start blocks.
• The lower one will only run when the mouse button is down. This type of block is called a

trigger – it only runs when it's condition is true. This handler just sets the mouse position to 0
and idles servo 2- stops it from moving.

• The upper start block starts with a comment and then continually loops.
• Another repeat block loops 100 times to control the servos before updating the terminal

screen.

• It sets the global variable x to mousex, a result block which returns the horizontal location of
the mouse. Notice that most blocks can be dragged into the yellow parameter region of
another block. The only blocks that can’t be parameters are blocks like “repeat” and “start”-
that wouldn’t make sense. Some blocks, like mousex can only by placed into a parameter
region- that’s why it doesn’t have any tabs.

• The setservo block from the motion section allows you to control the position of a servo or
speed of a continuous rotation servo. There are also blocks to make your robot go forwards,
backwards, and turn. We control one servo with the variable x, and the other with the
mousey block. This allows you to control the robot's movements with the mouse.

• The if block uses logic to execute the blocks that meet the criteria. In this case, when x>0 (x
is greater than 0) we set servo #2 to a position based on mouseZ- notice we can combine
blocks and text in the parameter region. When x is not greater than 0 we idle servo 2.

• After the repeat block loops 1000 times, the terminal screen is cleared and the value of
variable x is printed to the terminal.

When you run the program you can click the View Terminal button to see the value of x change
as you move the mouse. 12Blocks also let’s you view the value of all global variables and graph
them over time using the View Values button.

This graph shows the values of one or
more variables over time. You can
drag the trace up and down to move
it, or left/right to go forwards or
backwards in time. Click to the left
of the graph to set a trigger.

Use the Timescale dial to determine
the length of time you wish to look at.
 The current setting of 1s/div is good
for looking at our signal which
changes very slowly.

This area shows us a list of all global
variables. If you wish to plot a
variable, click the circle- it’s color
shows you which graph trace
corresponds to which variable.
The number in the Edit column
indicate the current value of the
variable. Click and change it if you
want to!

Sharing your Program
12Blocks makes it easy to share your creation with the world. Besides sharing the code on the
worksheet, you can also include information about your project, a schematic, and photos. Use
File->Properties to manage this additional information.

In the “General” tab you can type:
• name for the project
• description
• list hardware used
• see which variables, arrays, and imported files are used

In the “Schematic” tab you can drag and drop circuit symbols and type text.

In the “Photos” tab you can add images with captions to your worksheet.

Additional things to try:
• Click Device->Load Permanently load the program into the Propeller’s EEPROM. This lets

you use your robot away from your PC. Your program will restart running at the beginning
whenever the Propeller is reset.

• Right click on the worksheet tab to see a list of actions to take:New Worksheet, Save, Close,
Revert, and Copying either Code or the View to the Clipboard for pasting into other
applications.

• Right click anywhere in the worksheet to see a list of actions to take: Select All, Copy, Cut,
Paste, Delete, Properties

Add general information like a description and name, edit a
schematic, or attach photos and other images.

Exercise 17:Calculating Fibonacci Numbers with Functions

You might have heard about the Fibonacci sequence in movies
like “The DaVinci Code”. Let’s calculate some of the numbers
with 12Blocks!

Here are the first numbers in this sequence- notice a pattern?
0,1,1,2,3,5,8,13…

The first two numbers are 0 and 1, and after that the fibonacci number is the sum of two
preceding fibonacci numbers. Mathematically, we can define that like this:

Fib(0)=0
Fib(1)=1
Fib(x)=Fib(x-1)+Fib(x-2)

To calculate this with 12Blocks, we need to explore the functions part of the library.
This section initially only contains two blocks.

When you drag the myfunction start block to the worksheet, you should replace the
myfunction parameter with a name of your function. You can also replace the argument
parameter with a comma separated list and name your local variables. This will create a new
block in the functions section of the library- which you can use to call your new function:

 T

Use this block to call the fibonacci(x)
function. For example, fibonacci(1) should
return 1.

Now that you know how to create functions and how to call them, you should be able to create
this program (File/Examples/control/fibonacci):

Besides using a function, this program also uses the if else block. This block has two internal
attach tabs. If the condition is true, in our case x==0 or x==1 then the first part is used and
we set r to x. Else we set r to the sum of fibonacci(x-1) and fibonacci(x-2).
Finally, our function returns the local value of local variable r.

This program uses the terminal to prompt you for which fibonacci number you wish to calculate.
It then calls the fibonacci function which returns right away if x was set to 0 or 1. Otherwise it
will call the fibonacci function for (x-1) and (x-2). This is called recursion.

Recursion is sometimes the most straightforward way of programming functions, but it’s often
not very efficient and doesn’t work well for large numbers. This program will only work for the
first 8 fibonacci numbers, then it'll run out of memory. We’ll fix that with the next program.

Calculating Fibonacci Numbers with an Array
Now that you know how to calculate Fibonacci numbers with a recursive function, try a different
way of calculating the sequence. Instead of calculating the sequence when prompted, store the
sequence in the Propeller’s memory.
You already know about variables which are used to store the value of a single element. Arrays
can store multiple elements- ideal for storing a sequence of Fibonacci numbers. Once we’ve
stored the Fibonacci numbers in the array, retrieving the nth Fibonacci is as easy as using the get
item block from the array group of the vars section of the library. Before using an array, make
sure to tell 12Blocks how many elements you want to store in the array. Use the show/edit
program info block to show and edit the variables and arrays used in the program. See the
rectangular box on the right of the program below. Click on the yellow parameter regions to
change anything.
The first part of the following program (File/Examples/control/fib array) creates the Fibonacci
sequence and then prompts the user and displays the item from the array.
The second part calculates the sequence by first setting the first two entries of the array and then
looping from the second item to the xth to set them. It sets the nth element by summing the n-1
and the n-2th elements.

Exercise 18:Serial Communication

The following program (File>Examples>sensor>serial) uses the serial communication blocks
from the pins section of the library to send information from one cog to another. The top stack
tells 12Blocks to quickly sample the IO pins, this let’s us view the resulting RS232 signal with
the built-in logic analyzer at high speeds. The inner repeat loop sends one byte of data and then
waits 500mSecs. Both the baud rate and mode are configurable. A mode of 1 will leave the pin
high by default.

The bottom stack runs in another cog. It first prints a friendly greeting to 12Blocks’ terminal and
then continually prints incoming data.

Exercise 19:Measuring Pulse Width Modulated signals

In our first exercise we gradually brightened an LED by using pulse width modulation. Let's
look at pwm again- this time using the measure pulse block to measure how long the high and
low pulses are:
(File/Examples/sensors/pulse)

Exercise 20:

Exercise 21:Creating Custom Blocks

Although the block library is quite extensive, there comes a time when you want to create your
own blocks. All blocks are built using code that runs on a micro- the files that contain this code
are in the 12Blocks/Hardware directories. We can create 2 new blocks by typing some SPIN
code into the Propeller Tool:

This code contains two public functions with one parameter that output either a high or a low
signal. After you save this to: “12Blocks/Hardware/demoboard/pin.spin” and return to
12Blocks, you should see a new library section called: “custom”. Here you'll find two new
blocks- labeled using the name of the file, function name, and parameter:

_pin.high(pin)
_pin.low(pin)

Use them in a program to blink a light:
(File>Examples>control>custom block)

Exercise 22:

Exercise 23:Creating a User Interface and Standalone Executable

12Blocks lets you create a user interface for your program right in the worksheet and can also
bundle everything you need into a standalone executable. The user interface section contains all
sorts of blocks to control and monitor variables that can represent measurements, motor speeds,
etc. You can resize these blocks and change their properties by right clicking on them. User
interface blocks need to live on a background user interface block. Once you've run your
program inside of 12Blocks you can save it as an EXE file using File>Save As>Exe. You can
close 12Blocks and run your new executable on your or other machines.

(File>Examples>application>user interface)

Exercise 24:Editing Programs with 12Blocks and a Text Editor

12Blocks doesn't restrict you to only program visually. Let's start by creating a simple program
in 12Blocks.

Now, use View>Source to see the text code that represents your program. I've installed the
Propeller Tool, so that's where I see the code. Now, change the text code so it looks like this:

Save the file and when you return to 12Blocks, your program will look like this:

Exercise 25:Adapting 12Blocks to Custom Hardware

With 12Blocks you're writing programs that can theoretically be run on any hardware. As long
as the hardware permits it, a program that works on one device can work exactly the same on
another. That makes it easy to share and reuse code and other resources like books and tutorials.
Click on the library name to visit the Device Manager to learn more about the current device or
change to a different device:

If your device isn't supported yet you'll need to create a new directory in the 12Blocks/Hardware
directory with the name of your device. Ideally, copy a directory that's similar to the one you
seek to support. Then, you'll need to edit the device.xml file in that directory- here's a sample of
the DemoBoard/device.xml:

<hardware>
<!--This file allows 12Blocks to support the DemoBoard. The var's provide information to compile
and load programs.
12Blocks uses the "export,compile,link,load,detail,connect" variables to perform those actions.
Define other variables for your own purpose- use them by prefixing with $. The CDATA section
provides the template to generate the spin code.-->

 <var name="description" value="Parallax Propeller Demo Board: demonstrates the Propeller's
varied capabilities in a compact and fun platform. "/>
 <var name="website" value="http://www.parallax.com/tabid/768/productid/340/default.aspx"/>
 <var name="export" value="$fullfile.spin"/>
 <var name="include" value="spin"/>
 <var name="connect" value="1000000"/>
 <var name="$motor_req" value="_servo"/>
 <![CDATA[
{{
$info
}}
CON
 $stacksize
 _clkmode = xtal1+pll16x
 _xinfreq = 5_000_000 '80 MHz
 _motorlpin=0 'Left motor

 _motorrpin=1 'Right motor

Exercise 26:Interfacing with Skype

Skype is great for communicating with people that are far away from us- it's also great for
monitor and controlling your device! Before you use the skype block from the user interface
section, make sure your Skype application is running. Then, run your program and have a friend
chat with your device with these commands:
? Replies with help information
. Replies with the value of your variables
x=10 Sets a variable to a new value

(File>Examples>control>skype)

Exercise 27:

Exercise 28:

Exercise 29:Control Algorithms with PID loops

When you're trying to follow a line with a robot, controlling a room's temperature, or keeping a
motor's speed constant your using control logic. A PID controller is great for solving these
problems- although it may take some tuning to get it right. The pid block takes 4 parameters and
provides a result that should be used to control the device. The first parameter represents the
error- how far the device is from the goal. The next 3 are the Proportional, Integral and
Derivative parameters- try experimenting to see what they do.

(File>Examples>control>pid)

Exercise 30:

Exercise 31: Integration with XML-RPC

Some projects are so advanced that it's not enough to only run your program on a micro- you
may need to communicate with other PC programs, use the internet, or perform complex
calculations like computer vision. Use the xmlrpc block from the user interface section to add a
server to your worksheet that let's other programs monitor and control the variables in your
micro's program.

(File>Examples>control>xmlrpc)

Connecting to XML-RPC server with Python:
Commands:
import os,xmlrpclib
m=xmlrpclib.ServerProxy('http://localhost:5678')
m.list('')
m.get('x')
m.set('x','10')
m.get('x')
m.get('y')

Output:
'n,x,y,z'
'1'
''
'10'
'20'

http://localhost:5678/

Program Library:
12Blocks makes it easy to share programs with others. Visit and use the search tool to find a
program that solves your problem. Users can upload circuit schematics, photos of their project,
and the complete code for the program.

Exercise 32:Online Learning System

12Blocks was originally developed as a programming tool for individuals. It is now successfully
deployed in hundreds of schools to teach robotics, programming and critical thinking skills
required for STEM. Feedback from teachers led us to develop a tightly integrated Online
Learning System to make 12Blocks even more successful in the classroom.

The main goal of the OLS is to give students the power to apply learning at their own pace as
they explore interactive activities with plenty of teacher guidance. OLS provides the teacher
with powerful reporting tools to analyze student progress and easy-to-use authoring tools to
customize activities for their classroom. OLS takes 12Blocks to all sorts of devices and into the
cloud where online communities can collaborate to improve student learning.

Architecture:

Databases: Class Portfolio Curriculum Activities

Teacher
Actions:

Manage classes, get
overview then drill into
details, answer
questions

Track student
performance

Organize activities into
classroom curriculum

Find and customize
activities with online
editor using graphics,
12Blocks and forms
elements.

Information about a
classroom

Student's work is
saved online

Organized list of
activities for the class

Interactive labs
accessible to all
schools

Student
Actions:

Customize profile, ask
questions

Share progress with
parents, revisit past
work for study

Easily progress
through curriculum at
own pace.

Complete activities in
12Blocks and Browser

	Exercise 1: Understanding the 12Blocks Interface
	Exercise 2: Send “Hello World” to Simulated Terminal
	Exercise 3: Send text from Device to Terminal
	Exercise 4: Send text and numbers to the terminal
	Exercise 5: Math
	Exercise 6: Repeat
	Exercise 7: Variables
	Exercise 8: Tasks
	Exercise 9: State Machines
	Exercise 10: Working with Strings
	Exercise 11: Random Numbers
	Exercise 12: Pointers
	Exercise 13: Use multiple processors to blink lights
	Exercise 14: Sounds
	Exercise 15: Graphics
	Exercise 16: Controlling servos with Mouse and Keyboard
	Exercise 17: Calculating Fibonacci Numbers with Functions
	Exercise 18: Serial Communication
	Exercise 19: Measuring Pulse Width Modulated signals
	Exercise 21: Creating Custom Blocks
	Exercise 23: Creating a User Interface and Standalone Executable
	Exercise 24: Editing Programs with 12Blocks and a Text Editor
	Exercise 25: Adapting 12Blocks to Custom Hardware
	Exercise 26: Interfacing with Skype
	Exercise 29: Control Algorithms with PID loops
	Exercise 31: Integration with XML-RPC
	Exercise 32: Online Learning System

